发布时间:2023-04-20 文章分类:电脑百科 投稿人:王小丽 字号: 默认 | | 超大 打印

目录

TimeSformer理解

使用TimeSformer预训练模型,并提取视频特征(Linux 代码实战)

一、下载官方代码:

二、创建环境: 

三、准备想要预训练的数据集:

四、进行预训练

1)选择模型配置:

2)进行程序运行:

用预训练好的模型 提取视频特征 并保存为.npy文件


TimeSformer理解

关于<Is Space-Time Attention All You Need for Video Understanding?>论文学习

Video Transformer | TimeSformer 理解+ 代码实战

Video Transformer | TimeSformer 理解+ 代码实战

Video Transformer | TimeSformer 理解+ 代码实战

使用TimeSformer预训练模型,并提取视频特征

(Linux 代码实战)

一、下载官方代码:

git clone https://github.com/facebookresearch/TimeSformer
cd TimeSformer    # 进入文件夹

二、创建环境: 

# 创建环境
conda create -n TimeSformer python=3.7 -y
# 激活环境
conda activate TimeSformer
# 下载pytorch及其相关包
conda install pytorch==1.8.0 torchvision==0.9.0 torchaudio==0.8.0 cudatoolkit=10.2 -c pytorch
# 按照官方步骤安装剩下的包
pip install 'git+https://github.com/facebookresearch/fvcore'
pip install simplejson
pip install einops
pip install timm
conda install av -c conda-forge
pip install psutil
pip install scikit-learn
pip install opencv-python
pip install tensorboard
pip install psutil
pip install matplotlib
pip install opencv-python
pip install av
pip install scipy
pip install tensorboard
pip install sklearn
pip install timm

三、准备想要预训练的数据集:

(这里我下载的是THUMOS14里未剪辑的视频)

# 下载TH14数据集压缩包
wget -c https://storage.googleapis.com/thumos14_files/TH14_validation_set_mp4.zip
# 解压数据集
unzip TH14_validation_set_mp4.zip

1)生成train.csv

# 官方文档要求的csv格式
Construct the Kinetics video loader with a given csv file. The format of
        the csv file is:
        ```
        path_to_video_1 label_1
        path_to_video_2 label_2
        ...
        path_to_video_N label_N
        ```

四、进行预训练

1)选择模型配置:

Video Transformer | TimeSformer 理解+ 代码实战

这里本人选择的是TimeSformer_divST_16x16_448.yaml,更改第9行(更改数据集路径)和第42行(根据自己的GPU数量进行修改)

Video Transformer | TimeSformer 理解+ 代码实战

2)进行程序运行:

先将TimeSformer/tools/文件夹内的run_net.py粘贴到TimeSformer/文件夹下,然后运行程序 

python run_net.py  --cfg configs/Kinetics/TimeSformer_divST_16x16_448.yaml

 若下载初始权重不成功,可复制网址,粘贴到网页上,进行下载,在传入服务器相应文件夹中

Video Transformer | TimeSformer 理解+ 代码实战

用预训练好的模型 提取视频特征 并保存为.npy文件

1)首先,在TimeSformer里创建文件Video_frame_lift.py

输入模型的是图片,所以需要先对视频提帧并保存(最后输入模型的根据模型具体参数,分别是8,16,32张图片,原始策略是均匀分段选择图片,可以自己更改)

首先需要准备一个存放视频目录的文件,方便进行批量处理,我这里选择生成格式为  视频名+'\t'+视频路径的txt文件,生成代码如下:

# Video_frame_lift.py
import os
path = '/Video_feature_extraction/TH14_validation_set_mp4'  # 要遍历的目录
txt_path = '/Video_feature_extraction/video_validation.txt'    # 生成txt文件的路径
with open(txt_path, 'w') as f:
  for root, dirs, names in os.walk(path):
    for name in names:
        ext = os.path.splitext(name)[1]  # 获取后缀名
        if ext == '.mp4':
            video_path = os.path.join(root, name)  # mp4文件原始地址
            video_name = name.split('.')[0]
            f.write(video_name+'\t'+video_path+'\n')

2)然后,用ffmpeg进行视频提帧,创建文件ffmpeg.py

# ffmpeg.py
import os
import sys
import subprocess
OUT_DATA_DIR="/Video_feature_extraction/validation_pics" # 输出图片的文件夹
txt_path = "/Video_feature_extraction/video_validation.txt"
filelist = []
i = 1
with open(txt_path, 'r', encoding='utf-8') as f:
  for line in f:
    line = line.rstrip('\n')
    video_name = line.split('\t')[0].split('.')[0]
    dst_path = os.path.join(OUT_DATA_DIR, video_name)
    video_path = line.split('\t')[1]
    if not os.path.exists(dst_path):
      os.makedirs(dst_path)
    print(i)
    i += 1
    cmd = 'ffmpeg -i {} -r 1 -q:v 2 -f image2 {}/%05d.jpg'.format(video_path, dst_path)
    print(cmd)
    subprocess.call(cmd, shell=True,stdout=subprocess.DEVNULL, stderr=subprocess.DEVNULL)

注:如果发现生成的文件夹下,没有抽出来的图片,可能是ffmpeg版本问题。 

3)在TimeSformer文件夹内创建models文件夹,然后创建transforms.py

(即TimeSformer/models/transforms.py)

# transforms.py
import torchvision
import random
from PIL import Image, ImageOps
import numpy as np
import numbers
import math
import torch
class GroupRandomCrop(object):
    def __init__(self, size):
        if isinstance(size, numbers.Number):
            self.size = (int(size), int(size))
        else:
            self.size = size
    def __call__(self, img_group):
        w, h = img_group[0].size
        th, tw = self.size
        out_images = list()
        x1 = random.randint(0, w - tw)
        y1 = random.randint(0, h - th)
        for img in img_group:
            assert(img.size[0] == w and img.size[1] == h)
            if w == tw and h == th:
                out_images.append(img)
            else:
                out_images.append(img.crop((x1, y1, x1 + tw, y1 + th)))
        return out_images
class GroupCenterCrop(object):
    def __init__(self, size):
        self.worker = torchvision.transforms.CenterCrop(size)
    def __call__(self, img_group):
        return [self.worker(img) for img in img_group]
class GroupRandomHorizontalFlip(object):
    """Randomly horizontally flips the given PIL.Image with a probability of 0.5"""
    def __init__(self, is_flow=False):
        self.is_flow = is_flow
    def __call__(self, img_group, is_flow=False):
        v = random.random()
        if v < 0.5:
            ret = [img.transpose(Image.FLIP_LEFT_RIGHT) for img in img_group]
            if self.is_flow:
                for i in range(0, len(ret), 2):
                    ret[i] = ImageOps.invert(ret[i])  # invert flow pixel values when flipping
            return ret
        else:
            return img_group                #没有堆叠在一起, 只是以列表的形式把一组图片保存起来。
class GroupNormalize(object):
    def __init__(self, mean, std):
        self.mean = mean
        self.std = std
    def __call__(self, tensor):
        rep_mean = self.mean * (tensor.size()[0]//len(self.mean))
        rep_std = self.std * (tensor.size()[0]//len(self.std))
        # TODO: make efficient
        for t, m, s in zip(tensor, rep_mean, rep_std):
            t.sub_(m).div_(s)
        return tensor
class GroupScale(object):
    """ Rescales the input PIL.Image to the given 'size'.
    'size' will be the size of the smaller edge.
    For example, if height > width, then image will be
    rescaled to (size * height / width, size)
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.worker = torchvision.transforms.Resize(size, interpolation)
    def __call__(self, img_group):
        return [self.worker(img) for img in img_group]
class GroupOverSample(object):
    def __init__(self, crop_size, scale_size=None):
        self.crop_size = crop_size if not isinstance(crop_size, int) else (crop_size, crop_size)
        if scale_size is not None:
            self.scale_worker = GroupScale(scale_size)
        else:
            self.scale_worker = None
    def __call__(self, img_group):
        if self.scale_worker is not None:
            img_group = self.scale_worker(img_group)
        image_w, image_h = img_group[0].size
        crop_w, crop_h = self.crop_size
        offsets = GroupMultiScaleCrop.fill_fix_offset(False, image_w, image_h, crop_w, crop_h)
        oversample_group = list()
        for o_w, o_h in offsets:
            normal_group = list()
            flip_group = list()
            for i, img in enumerate(img_group):
                crop = img.crop((o_w, o_h, o_w + crop_w, o_h + crop_h))
                normal_group.append(crop)
                flip_crop = crop.copy().transpose(Image.FLIP_LEFT_RIGHT)
                if img.mode == 'L' and i % 2 == 0:
                    flip_group.append(ImageOps.invert(flip_crop))
                else:
                    flip_group.append(flip_crop)
            oversample_group.extend(normal_group)
            oversample_group.extend(flip_group)
        return oversample_group
class GroupMultiScaleCrop(object):                
    #   完成对所有图片的裁剪, 过程没看懂,反正随机剪切后是224 x 224
    def __init__(self, input_size, scales=None, max_distort=1, fix_crop=True, more_fix_crop=True):
        self.scales = scales if scales is not None else [1, .875, .75, .66]
        self.max_distort = max_distort
        self.fix_crop = fix_crop
        self.more_fix_crop = more_fix_crop
        self.input_size = input_size if not isinstance(input_size, int) else [input_size, input_size]       # 前面输入是224
        self.interpolation = Image.BILINEAR   # 双线性插值
    def __call__(self, img_group):            #  具体使用的时候,都是不需要传入img_group的,DataSet类会自动传入
        im_size = img_group[0].size   #  第一幅图像的大小
        crop_w, crop_h, offset_w, offset_h = self._sample_crop_size(im_size)
        crop_img_group = [img.crop((offset_w, offset_h, offset_w + crop_w, offset_h + crop_h)) for img in img_group]
        ret_img_group = [img.resize((self.input_size[0], self.input_size[1]), self.interpolation)
                         for img in crop_img_group]
        return ret_img_group         #   没有堆叠在一起,只是以列表的形式把一组图片保存起来。
    def _sample_crop_size(self, im_size):
        image_w, image_h = im_size[0], im_size[1]       #  宽,高
        # find a crop size
        base_size = min(image_w, image_h)        #  最小值
        crop_sizes = [int(base_size * x) for x in self.scales]       # 最小值乘以  [1, .875, .75, .66]
        #  小知识     2 *  [2, 4, 6, 8]  =  [2, 4, 6, 8, 2, 4, 6, 8]  所以要用上面的方法
        crop_h = [self.input_size[1] if abs(x - self.input_size[1]) < 3 else x for x in crop_sizes]
        crop_w = [self.input_size[0] if abs(x - self.input_size[0]) < 3 else x for x in crop_sizes]
        # 如果所有的 abs(x - self.input_size[1]) >= 3, 则,crop_h = [224, 196.0, 168.0, 147.84]
        # 如果所有的 abs(x - self.input_size[1]) < 3, 则,crop_h = [224, 224.0, 224.0, 224]     没看懂
        pairs = []
        for i, h in enumerate(crop_h):
            for j, w in enumerate(crop_w):
                if abs(i - j) <= self.max_distort:
                    pairs.append((w, h))
        crop_pair = random.choice(pairs)      #  随机选择一个来裁剪
        if not self.fix_crop:                 #  如果不是固定大小
            w_offset = random.randint(0, image_w - crop_pair[0])
            h_offset = random.randint(0, image_h - crop_pair[1])
        else:
            w_offset, h_offset = self._sample_fix_offset(image_w, image_h, crop_pair[0], crop_pair[1])
        return crop_pair[0], crop_pair[1], w_offset, h_offset
    def _sample_fix_offset(self, image_w, image_h, crop_w, crop_h):
        offsets = self.fill_fix_offset(self.more_fix_crop, image_w, image_h, crop_w, crop_h)
        return random.choice(offsets)
    @staticmethod
    def fill_fix_offset(more_fix_crop, image_w, image_h, crop_w, crop_h):
        w_step = (image_w - crop_w) // 4
        h_step = (image_h - crop_h) // 4
        ret = list()
        ret.append((0, 0))  # upper left
        ret.append((4 * w_step, 0))  # upper right
        ret.append((0, 4 * h_step))  # lower left
        ret.append((4 * w_step, 4 * h_step))  # lower right
        ret.append((2 * w_step, 2 * h_step))  # center
        if more_fix_crop:
            ret.append((0, 2 * h_step))  # center left
            ret.append((4 * w_step, 2 * h_step))  # center right
            ret.append((2 * w_step, 4 * h_step))  # lower center
            ret.append((2 * w_step, 0 * h_step))  # upper center
            ret.append((1 * w_step, 1 * h_step))  # upper left quarter
            ret.append((3 * w_step, 1 * h_step))  # upper right quarter
            ret.append((1 * w_step, 3 * h_step))  # lower left quarter
            ret.append((3 * w_step, 3 * h_step))  # lower righ quarter
        return ret
class GroupRandomSizedCrop(object):
    """Random crop the given PIL.Image to a random size of (0.08 to 1.0) of the original size
    and and a random aspect ratio of 3/4 to 4/3 of the original aspect ratio
    This is popularly used to train the Inception networks
    size: size of the smaller edge
    interpolation: Default: PIL.Image.BILINEAR
    """
    def __init__(self, size, interpolation=Image.BILINEAR):
        self.size = size
        self.interpolation = interpolation
    def __call__(self, img_group):
        for attempt in range(10):
            area = img_group[0].size[0] * img_group[0].size[1]
            target_area = random.uniform(0.08, 1.0) * area
            aspect_ratio = random.uniform(3. / 4, 4. / 3)
            w = int(round(math.sqrt(target_area * aspect_ratio)))
            h = int(round(math.sqrt(target_area / aspect_ratio)))
            if random.random() < 0.5:
                w, h = h, w
            if w <= img_group[0].size[0] and h <= img_group[0].size[1]:
                x1 = random.randint(0, img_group[0].size[0] - w)
                y1 = random.randint(0, img_group[0].size[1] - h)
                found = True
                break
        else:
            found = False
            x1 = 0
            y1 = 0
        if found:
            out_group = list()
            for img in img_group:
                img = img.crop((x1, y1, x1 + w, y1 + h))
                assert(img.size == (w, h))
                out_group.append(img.resize((self.size, self.size), self.interpolation))
            return out_group
        else:
            # Fallback
            scale = GroupScale(self.size, interpolation=self.interpolation)
            crop = GroupRandomCrop(self.size)
            return crop(scale(img_group))
class Stack(object):      # 将所有图像水平堆叠,变成3 x 224 x (N * 224)大小的图像
    def __init__(self, roll=False):
        self.roll = roll
    def __call__(self, img_group):
        if img_group[0].mode == 'L':
            return np.concatenate([np.expand_dims(x, 2) for x in img_group], axis=2)
        elif img_group[0].mode == 'RGB':
            if self.roll:
                return np.concatenate([np.array(x)[:, :, ::-1] for x in img_group], axis=2)    # 将图片水平方向翻转后,横向堆叠在一起(axis=2,表示横向)
            #  感觉没有多大的意义,因为前面已经将图像水平翻转了。所以此处多次一举了。
            #  [:, :, ::-1] 是将一副3*224*224的图像从最后一列往第一列倒着写,步长是1。即相当于水平翻转
            #  [:, :, ::-2] 是将一副3*224*224的图像从最后一列往第一列倒着写,步长是2。图像大小减小一倍(水平方向)
            #  [:, :, ::1] 是将一副3*224*224的图像从第一一列往最后一列写,步长是1。即相当于原图
            #  [:, :, ::2] 是将一副3*224*224的图像从第一一列往最后一列写,步长是2。图像大小减小一倍(水平方向)
            #  [:, :, :2:] 是将一副3*224*224的图像从第一一列往最后一列写,步长是1,但只取前两列。
            else:
                return np.concatenate(img_group, axis=2)
class ToTorchFormatTensor(object):       #   可以传入 numpy数据类型,也可以传入PIL Image数据类型。
    """ Converts a PIL.Image (RGB) or numpy.ndarray (H x W x C) in the range [0, 255]
    to a torch.FloatTensor of shape (C x H x W) in the range [0.0, 1.0] """
    def __init__(self, div=True):
        self.div = div
    def __call__(self, pic):              #  因为ToTorchFormatTensor处理的是一张图片,而不是一组图片,所以使用之前需要将所有图片堆叠在一起。
        if isinstance(pic, np.ndarray):
            # handle numpy array
            img = torch.from_numpy(pic).permute(2, 0, 1).contiguous()
        else:
            # handle PIL Image
            img = torch.ByteTensor(torch.ByteStorage.from_buffer(pic.tobytes()))     # 这一步的 img范围是0到255的tensor类型
            img = img.view(pic.size[1], pic.size[0], len(pic.mode))
            # put it from HWC to CHW format
            # yikes, this transpose takes 80% of the loading time/CPU
            img = img.transpose(0, 1).transpose(0, 2).contiguous()
        return img.float().div(255) if self.div else img.float()             # 如果div是真,才需要除以255,否则就不需要除了。传入是假,所以不需要除了
class IdentityTransform(object):
    def __call__(self, data):
        return data
if __name__ == "__main__":
    trans = torchvision.transforms.Compose([
        GroupScale(256),
        GroupRandomCrop(224),
        Stack(),
        ToTorchFormatTensor(),
        GroupNormalize(
            mean=[.485, .456, .406],
            std=[.229, .224, .225]
        )]
    )
    im = Image.open('')
    color_group = [im] * 3
    rst = trans(color_group)
    gray_group = [im.convert('L')] * 9
    gray_rst = trans(gray_group)
    trans2 = torchvision.transforms.Compose([
        GroupRandomSizedCrop(256),
        Stack(),
        ToTorchFormatTensor(),
        GroupNormalize(
            mean=[.485, .456, .406],
            std=[.229, .224, .225])
    ])
    print(trans2(color_group))

4)接下来,在TimeSformer文件夹内创建dataloader.py

import json
import torchvision
import random
import os
import numpy as np
import torch
import torch.nn.functional as F
import cv2
from torch.utils.data import Dataset
from torch.autograd import Variable
from models.transforms import *
class VideoClassificationDataset(Dataset):
    def __init__(self, opt, mode):
        # python 3
        # super().__init__()
        super(VideoClassificationDataset, self).__init__()
        self.mode = mode  # to load train/val/test data
        self.feats_dir = opt['feats_dir']
        if self.mode == 'val':
            self.n = 5000           #提取的视频数量
        if self.mode != 'inference':
            print(f'load feats from {self.feats_dir}')
            with open(self.feats_dir) as f:
                feat_class_list = f.readlines()
            self.feat_class_list = feat_class_list
            mean =[0.485, 0.456, 0.406]
            std = [0.229, 0.224, 0.225]
            model_transform_params  = {
                "side_size": 256,
                "crop_size": 224,
                "num_segments": 8,
                "sampling_rate": 5
            }
            # Get transform parameters based on model
            transform_params = model_transform_params
            transform_train = torchvision.transforms.Compose([
                       GroupMultiScaleCrop(transform_params["crop_size"], [1, .875, .75, .66]),
                       GroupRandomHorizontalFlip(is_flow=False),
                       Stack(roll=False),
                       ToTorchFormatTensor(div=True),
                       GroupNormalize(mean, std),
                   ])
            transform_val = torchvision.transforms.Compose([
                       GroupScale(int(transform_params["side_size"])),
                       GroupCenterCrop(transform_params["crop_size"]),
                       Stack(roll=False),
                       ToTorchFormatTensor(div=True),
                       GroupNormalize(mean, std),
                   ])
            self.transform_params = transform_params
            self.transform_train = transform_train
            self.transform_val = transform_val
        print("Finished initializing dataloader.")
    def __getitem__(self, ix):
        """This function returns a tuple that is further passed to collate_fn
        """
        ix = ix % self.n
        fc_feat = self._load_video(ix)
        data = {
            'fc_feats': Variable(fc_feat),
            'video_id': ix,
        }
        return data
    def __len__(self):
        return self.n
    def _load_video(self, idx):
        prefix = '{:05d}.jpg'
        feat_path_list = []
        for i in range(len(self.feat_class_list)):
            video_name = self.feat_class_list[i].rstrip('\n').split('\t')[0]+'-'
            feat_path = self.feat_class_list[i].rstrip('\n').split('\t')[1]
            feat_path_list.append(feat_path)
        video_data = {}
        if self.mode == 'val':
            images = []
            frame_list =os.listdir(feat_path_list[idx])
            average_duration = len(frame_list) // self.transform_params["num_segments"]
            # offests为采样坐标
            offsets = np.array([int(average_duration / 2.0 + average_duration * x) for x in range(self.transform_params["num_segments"])])
            offsets = offsets + 1
            for seg_ind in offsets:
                p = int(seg_ind)
                seg_imgs = Image.open(os.path.join(feat_path_list[idx], prefix.format(p))).convert('RGB')
                images.append(seg_imgs)
            video_data = self.transform_val(images)
            video_data = video_data.view((-1, self.transform_params["num_segments"]) + video_data.size()[1:])
        return video_data

4)视频特征提取并存为npy文件

先选择你要用的模型,这里我选择作者提供的已经预训练好的model(需要VPN才能下载作者模型),将model下载下来。

我下载了这两个:

TimeSformer_divST_8x32_224_K400.pyth

TimeSformer_divST_16x16_448_K600.pyth

Video Transformer | TimeSformer 理解+ 代码实战

提取特征时为了保持一致性,加载模型应该用eval()模式,这样同一个视频每次提取的特征是固定不变的。在TimeSformer文件夹内创建extract.py

import argparse
import os
import torch
import numpy as np
from torch.utils.data import DataLoader
import random
from dataloader import VideoClassificationDataset
from timesformer.models.vit import TimeSformer
device = torch.device("cuda:6")
if __name__ == '__main__':
    opt = argparse.ArgumentParser()
    opt.add_argument('test_list_dir', help="Directory where test features are stored.")
    opt = vars(opt.parse_args())
    test_opts = {'feats_dir': opt['test_list_dir']}
    # =================模型建立======================
    model = TimeSformer(img_size=224, num_classes=20, num_frames=8, attention_type='divided_space_time',
                        pretrained_model='checkpoints/TimeSformer_divST_16x16_448_K600.pyth')
    model = model.eval().to(device)
    print(model)
    # ================数据加载========================
    print("Use", torch.cuda.device_count(), 'gpus')
    test_loader = {}
    test_dataset = VideoClassificationDataset(test_opts, 'val')
    test_loader = DataLoader(test_dataset, batch_size=1, num_workers=6, shuffle=False)
    # ===================训练和验证========================
    i = 0
    file1 = open("./video_validation.txt")
    file1_list = file1.readlines()
    for data in test_loader:
        model_input = data['fc_feats'].to(device)
        name_feature = file1_list[i].rstrip().split('\t')[0].split('.')[0]
        i = i + 1
        out = model(model_input, )
        out = out.squeeze(0)
        out = out.cpu().detach().numpy()
        print("out.size():",out.size())
        np.save('video_feature/' + name_feature + '.npy', out)
        print(i)

然后终端输入:

python extract.py ./video_validation.txt

 运行程序

参考文章:

使用TimeSformer预训练模型提取视频特征_yxy520ya的博客-CSDN博客_视频特征提取

transforms工具类_大侠刷题啦的博客-CSDN博客